Identification of the critical regulators of protein synthesis and degradation in human muscle atrophy
Dr. Lionel Tintignac and Dr. Nitish Mittal, University of Basel
Abstract (Lay summary see below)
The imbalance between protein synthesis and protein degradation is a common pathogenic mechanism underlying muscle diseases. A higher rate of protein synthesis than the rate of protein degradation leads to hypertrophy, while a relatively lower rate of protein synthesis leads to atrophy. Understanding the regulators of these processes is a prerequisite for the development of therapeutic strategies to counteract atrophy. Although the vast majority of studies have focused on deciphering degradation processes that contribute to acute muscle breakdown (wasting), it is only recently that the proper functioning of the protein synthesis machinery in atrophying muscles has started to be questioned and investigated. We previously established that upon atrophy induction protein degradation directly targets protein synthesis. More recently, we identified an opposite link as well, demonstrating that increased protein synthesis initiation through sustained activation of mTORC1 in muscle (TSCmKO mouse model) does not leads to hypertrophy, but rather to activation of the unfolding protein response pathway. To follow up on these observations we have recently established a unique combination of cutting-edge techniques in our laboratories. We here proposed a 2-year project aiming to identify the molecular networks that specifically control protein synthesis and degradation in human myofibers under physiological conditions, and that are perturbed upon atrophic stress. Our strategy will be to integrate genome-wide measurements of 1) transcript levels (RNA-Seq), 2) translation levels (sequencing of Ribosome protected fragments, RPFs) and 3) protein levels (proteomics) from human myofibers. The ribosome footprinting technique will provide us, for the first time, with estimates of protein synthesis rates at individual RNA resolution, thus allowing us to further uncover the impact of these regulatory factors on translation of each gene. We will further apply a powerful technique that we have recently implemented, known as BioID, to map the direct interactome of the two main players we have already identified in atrophy. For this, we will engineer human myoblast cell lines to express endogenously chimeric BioID proteins. This will allow us to determine the direct interactomes of these proteins, as well as to investigate the translation process at extremely high resolution, because we will be able to isolate tagged ribosomes due to their interaction with our BioID chimeras and compare the pool of mRNAs interacting with these ribosomes with that of all ribosome-bound translated mRNAs. With this project we will define the mechanisms by which protein degradation and synthesis dysregulation promote muscle atrophy, which will open new avenues for drug discovery to counteract pathological muscle proteolysis and wasting.
Lay summary
La dérégulation de l’équilibre entre la synthèse et la dégradation des protéines (homéostasie protéique ou proteostasie) est un mécanisme pathogénique commun à la majorité des maladies affectant le muscle. Ainsi, une augmentation de la synthèse protéique au-delà du taux de dégradation est associée à un phénotype musculaire hypertrophique alors qu’une diminution de la synthèse protéique caractérise à l’inverse un phénotype atrophique. L’appréhension des mécanismes régulateurs sous-jacents à ces processus est un prérequis aux développement de nouvelles stratégies thérapeutiques dans la lutte contre l’atrophie. Si à ce jour la grande majorité des études réalisées s’est focalisée sur l’identification des mécanismes de dégradation conduisant à une protéolyse musculaire accrue au cours de l’atrophie, ce n’est que très récemment que l’étude de la machinerie de synthèse protéique dans ces conditions a gagné en intérêt.
Nous avons précédemment mis en évidence que la machinerie de dégradation protéique cible spécifiquement la synthèse protéique durant l’atrophie. Plus récemment, nous avons établi un nouveau lien en démontrant que l’augmentation de l’initiation de la synthèse protéique, par l’hyper activation de la kinase mTORC1 dans le muscle (modèle murin TSCmKO), n’induit pas un phénotype musculaire hypertrophique mais résulte plutôt dans l’activation de la voie du stress liée à l’accumulation de protéines non repliées (Unfolded Protein Response ou UPR) ayant in fine des conséquences délétères pour le muscle. Afin d’approfondir ces observations nous avons mis au point une combinaison unique de techniques de pointes au laboratoire. Ainsi nous proposons à travers ce projet de 2 ans d’identifier les voies moléculaires qui contrôlent spécifiquement la synthèse et la dégradation des protéines dans les myofibres humaines en conditions physiologiques et en réponse au stress atrophique.
L’originalité de notre stratégie réside dans l’analyse génétique réalisée qui intégrera les mesures 1) à l’échelle transcriptionelle (RNA-Seq); 2) à l’échelle traductionnelle (séquençage des fragments protégés par les ribosomes, RPFs) ; 3) et enfin au niveau protéique (protéome). Le recours à la technique de profilage ribosomique (RPF) nous permettra ainsi pour la première fois de définir le taux de synthèse protéique relatif à chacun des ARNm (RNAseq), dans le but d’identifier les facteurs régulateurs de la traduction de chacun de ces gènes. D’autre part nous aurons recourt à la technique de BioID récemment développée au laboratoire permettant l’identification par étiquetage par la biotine des interactants proximaux et distaux de deux régulateurs principaux de l’atrophie déjà identifiés (impliqués dans la synthèse et la dégradation des protéines). Pour ce faire des myoblastes humains seront utilisés afin d’exprimer de manière endogène les protéines chimères BioID. Ainsi nous pourrons déterminer d’une part, les interactomes des protéines d’intérêt, et d’autre part définir avec précision les processus traductionnels impliqués car nous serons en mesure d’isoler les ribosomes biotinylés (ayant interagit avec les chimères BioID) et de comparer les pools d’ARNm régulés par ces ribosomes avec l’ensemble des ARNm en cours de traduction (RPF).
Dans son ensemble ce projet va permettre de définir les mécanismes par lesquels la dérégulation de la synthèse et de la dégradation des protéines initie l’atrophie musculaire ce qui devrait ouvrir de nouvelles pistes de travail dans le développement de molécules thérapeutiques pour lutter contre la protéolyse et la fonte musculaire.
Projekte
- Neue Forschungsprojekte ab 2024
- Die Bedeutung der Forschung
- Finanzierte Projekte
- Unstructured proteins as therapeutic targets for neuromuscular diseases
- Open and reproducible pipeline for the acquisition and analysis of muscle MRI data in Facioscapulohumeral Muscular Dystrophy
- Dissecting lysosomal signals to fight Pompe disease
- Functional properties and epigenetic signature of quiescent and early activated human muscle reserve cells
- Activation of human skeletal muscle stem cells:role of Orai3 ans its partner AHNAK2 in physiological condition and in Duchenne Muscular Dystrophy
- Understanding the clinical spectrum associated with VMA21 deficiency
- ANTXR2 as a key player in Collagen VI signaling in muscle stem cells: new therapeutic perspectives for COL6-related myopathies.
- Molecular mechanisms of complement activation and neuromuscular disruption by combinations of autoantibodies from patients with Myasthenia Gravis
- From the investigation of the role of SRSF1 in ALS/FTD to its targeting as a therapeutic strategy
- Molecular crosstalk between muscles and motor neurons and its role in neuromuscular circuit formation
- Molecular Diagnosis and Coping Mechanisms in Mitochondrial Myopathies
- IPRIMYO: Immune-privileged, immortal, myogenic stem cells for gene therapy of Muscular Dystrophy
- Effect of RYR1 mutations on muscle spindle function and their impact on the musculoskeletal system
- Therapeutic potential of human myogenic reserve cells in Duchenne Muscular Dystrophy
- Glutamine metabolism as a potential target for Duchenne Muscular Dystrophy
- Targeting protein s-acylation during Tubular Aggregate Myopathy
- Aggravating the phenotype of dystrophic mice for improving preclinical research and clinical translation for Duchenne muscular dystrophy
- Characterization of autoreactive T cells in Guillain-Barré syndrome
- A vascularized human muscle-on-a-chip to elucidate the contribution of endothelial-mesenchymal transition on the progression of muscular dystrophies
- Characterization of a novel form of ALS associated with changes in the sphingolipid metabolism
- Pre-clinical treatment of mouse models carrying recessive Ryr1 mutations with HDAC/DNA methyltransferase inhibitors.
- New aspects of TGFβ signaling in muscle homeostasis and regeneration
- Inhibition of sphingolipid synthesis as a treatment strategy for Duchenne muscular dystrophy
- Tamoxifen in Duchenne muscular dystrophy (TAMDMD)
- DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD
- Facilitating diagnosis of critical illness myopathy using muscle excitability testing
- Rapid Exploratory Imaging for High-resolution and Whole Extremity Coverage in MR Neurography
- Deciphering novel mechanisms and effectors contributing to muscle dysfunction in Myotonic Dystrophy Type I
- Can HDAC/DNA methyltransferase inhibitors improve muscle function in a congenital myopathy caused by recessive RYR1 mutations?
- Identification of the critical regulators of protein synthesis and degradation in human muscle atrophy
- Exploring peripheral B-cell-helper T cell phenotypes in the blood of patients with Myasthenia gravis using mass cytometry (CyTOF)
- Molecular signature, metabolic profile and therapeutic potential of human myogenic reserve cells
- A multicenter cross-sectional and longitudinal study of the Swiss cohort of Merosin-negative congenital muscular dystrophy
- Targeting NADPH oxidase 4 in models of Duchenne muscular dystrophy
- Characterizing the role of ER stress in C9orf72-linked ALS pathology
- Inducing mitophagy with Urolithin A to restore mitochondrial and muscle function in muscular dystrophy
- Motor unit action potentials analysis in patients with myopathies with a new wireless portable and multichannel Surface EMG device (WPM-SEMG)
- Role and therapeutic potential of PLIN3 in neuromuscular diseases
- Changes in ventilation distribution in children with neuromuscular disease using the insufflator/exsufflator technique: An observational study
- Mechanism and function of genome organization in muscle development and integrity
- Role and therapeutic potential of NADPH oxidases in a mouse model of Duchenne Muscular Dystrophy
- Characterization of pathological pathways activated in muscles of patients with congenital myopathies with disturbed Ca2+ homeostasis
- Creation of a study team to conduct an SMA 1-clinical trial at the Centre for Neuromuscular Diseases of the University Children's Hospital Basel (UKBB)
- Novel treatment to stop progressive neuropathy and muscle weakness in multifocal motor neuropathy
- Understanding the pathomechanisms leading to muscle alterations in Myotonic Dystrophy type I
- Automated volumetry and quantitative MRI to diagnose peripheral nerve lesions – translational proposal for a new clinical diagnostic imaging tool
- Novel approaches against Spinal Muscular Atrophy by targeting splicing regulators
- Protective effects and mechanisms of action of tamoxifen in mice with severe muscular diseases
- Role of the receptor FgfrL1 in the development of slow muscle fibers
- Muscle velocity recovery cycles: A new tool for early diagnosis of critical illness myopathy
- Generation of uncommitted human IPSC derived muscle stem cells for therapeutic applications
- Transposable vectors for dystrophin-expression in a murine model for muscular dystrophy
- Cardiac involvement in patients with Duchenne/Becker Muscular Dystrophy; an observational study
- Deciphering the pathogenic mechanisms of C9ORF72 ALS
- Enhancing estrogenic signalling to fight muscular dystrophies: Mechanisms of action and repurposing clinically approved drugs
- Mechanisms and therapeutic potential of modulating PGC‐1α to alter neuromuscular junction morphology and function
- Triggering human myoblast differentiation: from EGFR to myogenic transcription factors
- Improving cellular therapies of muscle dystrophies by uncovering epigenetic and signaling pathways of muscle formation
- Protein engineering in an attempt to increase the mechanical, integrin dependent cytoskeleton-matrix linkage in muscle fibers
- Muscle velocity recovery cycles: a new tool for characterization of muscle disease in vivo
- Excessive neurotrypsin activation and agrin cleavage-a pathogenic condition leading to sarcopenia-like muscle atrophy?
- Evaluation of novel treatment strategies for dyspherlinopathies in mouse models
- Cell therapy of LGMD2D by donor HLA-characterized human mesoangioblasts (hMABs) produced in GMP conditions
- In search of small molecules targeting protein-RNA complex: a novel approach against Spinal Muscular Atrophy
- Restoration of autophagy as a new strategy for the treatment of congenital muscular dystrophies
- Development of magnetic resonance methods for functional imaging of the skeletal muscle
- Targeting ER stress response: a potential mechanism for neuroprotection in Amyotrophic Lateral Sclerosis
- Generation of uncommitted human IPSC derived muscle stem cells for therapeutic applications
- Projektbroschüre
- SEAL Therapeutics AG
- Meetings und Seminare
- Teilnahme an Dachverbände
- Patientenregister
- Netzwerk Myosuisse
FSRMM
- Chemin des Saules 4B
2013 Colombier - +41 78 629 63 92
- philippe.rognon@fsrmm.ch