Role of the receptor FgfrL1 in the development of slow muscle fibers
Prof. Beat Trueb, Department of Clinical Research, University of Bern
Abstract (Lay summary see below)
Our project deals with a novel receptor called FgfrL1 and the question how this receptor controls development of slow muscle fibers. FgfrL1 is found at low levels on the surface of all cell types. It interacts with heparin and FGF ligands in a way similar to the well-known fibroblast growth factor receptors. However, it lacks the intracellular tyrosin kinase domain that would be required for transduction of the signal to the interior of the cells. At present, the molecular working mechanism of this receptor is unknown.
Mice with a targeted deletion of FgfrL1 die at birth because their diaphragm is underdeveloped and not strong enough to inflate the lungs after birth. We have demonstrated that such diaphragms specifically lack the slow muscle fibers. Thus, FgfrL1 is involved in the embryonic development of slow muscle fibers.
We plan to investigate in detail, which domains of FgfrL1 are required for activity and which domains are dispensable. For this purpose, we intend to use transgenic mouse lines since we do not have any in vitro test to measure the activity of FgfrL1. We have already produced mice that lack the intracellular domain of FgfrL1. Such mice are viable and do not show any alterations when compared to wildtype littermates. Recently, we have started to produce mice that lack parts of the extracellular region of FgfrL1, either the first Ig-domain or the second Ig-domain or the third Ig-domain. Careful analysis of such knockout mice (survival after birth, presence of slow muscle fibers in the diaphragm) should yield valuable information about a possible molecular mechanism of our receptor. Once we will know more about this mechanism, we might be able to set up an in vitro test to measure the activity of FgfrL1.
It is likely that in the long run human patients who - similar to our knockout mice - lack slow muscle fibers in their diaphragm due to muscle degeneration (muscular dystrophy) will profit from our findings.
Lay summary
Rolle des Rezeptors FGFRL1 bei der Entwicklung von langsamen Muskelfasern
Die meisten Muskeln des Menschen bestehen aus schnellen und aus langsamen Muskelfasern. Gemäss ihrem Namen können schnelle Fasern sehr schnell kontrahieren, ermüden aber auch sehr schnell. Umgekehrt kontrahieren langsame Muskelfasern viel langsamer, ermüden dafür aber viel weniger. Muskeln, die für den Dauereinsatz bestimmt sind, besitzen einen hohen Anteil an langsamen Fasern. Muskeln, die vor allem für kurzzeitige Höchstleistungen gebraucht werden, haben einen hohen Anteil an schnellen Fasern. Der Zwerchfellmuskel, der für die kontinuierliche Atmung gebraucht wird, besitzt deshalb bei Menschen wie bei Mäusen einen hohen Anteil an langsamen Muskelfasern. Bis heute ist nicht bekannt, wie die Ausbildung von schnellen und langsamen Muskelfasern während der Embryonalentwicklung gesteuert wird. Es scheint, dass Proteine wie Six1, Six4, Sox6 und Nfix den Fasertyp beeinflussen; diese Proteine werden aber vor allem im schnellen Fasertyp gefunden.
Wir haben kürzlich ein neues Protein (genannt FGFRL1) entdeckt, das unter anderem im Muskel vorkommt und das spezifisch die Entwicklung des langsamen Fasertyps zu steuern scheint. Mäuse, bei welchen das Gen für FGFRL1 defekt ist, verlieren alle ihre langsamen Muskelfasern. Solche Mäuse sterben unmittelbar nach der Geburt, weil ihr Zwerchfellmuskel zu schwach ist, um die Lungen mit Luft und Sauerstoff zu versorgen.
In unserem Forschungsprojekt wollen wir untersuchen, wie FGFRL1 die Ausbildung von langsamen Muskelfasern kontrolliert. Dazu werden wir unterschiedliche Varianten des Proteins verwenden, um zu testen, welche Anteile absolut notwendig sind und welche Anteile für die normale Funktion entbehrlich sind. Unsere Forschungsergebnisse sollten mithelfen, den Funktionsmechanismus des neuen Proteins FGFRL1 zu verstehen. Wenn dieser Mechanismus einmal bekannt ist, könnte unser Wissen verwendet werden, um Patienten mit Atemproblemen zu helfen. Solche Probleme treten vor allen bei Krankheitssyndromen wie der Muskeldystrophie auf, bei welcher der Zwerchfellmuskel langsam degeneriert.
Projekte
- Neue Forschungsprojekte ab 2024
- Die Bedeutung der Forschung
- Finanzierte Projekte
- Unstructured proteins as therapeutic targets for neuromuscular diseases
- Open and reproducible pipeline for the acquisition and analysis of muscle MRI data in Facioscapulohumeral Muscular Dystrophy
- Dissecting lysosomal signals to fight Pompe disease
- Functional properties and epigenetic signature of quiescent and early activated human muscle reserve cells
- Activation of human skeletal muscle stem cells:role of Orai3 ans its partner AHNAK2 in physiological condition and in Duchenne Muscular Dystrophy
- Understanding the clinical spectrum associated with VMA21 deficiency
- ANTXR2 as a key player in Collagen VI signaling in muscle stem cells: new therapeutic perspectives for COL6-related myopathies.
- Molecular mechanisms of complement activation and neuromuscular disruption by combinations of autoantibodies from patients with Myasthenia Gravis
- From the investigation of the role of SRSF1 in ALS/FTD to its targeting as a therapeutic strategy
- Molecular crosstalk between muscles and motor neurons and its role in neuromuscular circuit formation
- Molecular Diagnosis and Coping Mechanisms in Mitochondrial Myopathies
- IPRIMYO: Immune-privileged, immortal, myogenic stem cells for gene therapy of Muscular Dystrophy
- Effect of RYR1 mutations on muscle spindle function and their impact on the musculoskeletal system
- Therapeutic potential of human myogenic reserve cells in Duchenne Muscular Dystrophy
- Glutamine metabolism as a potential target for Duchenne Muscular Dystrophy
- Targeting protein s-acylation during Tubular Aggregate Myopathy
- Aggravating the phenotype of dystrophic mice for improving preclinical research and clinical translation for Duchenne muscular dystrophy
- Characterization of autoreactive T cells in Guillain-Barré syndrome
- A vascularized human muscle-on-a-chip to elucidate the contribution of endothelial-mesenchymal transition on the progression of muscular dystrophies
- Characterization of a novel form of ALS associated with changes in the sphingolipid metabolism
- Pre-clinical treatment of mouse models carrying recessive Ryr1 mutations with HDAC/DNA methyltransferase inhibitors.
- New aspects of TGFβ signaling in muscle homeostasis and regeneration
- Inhibition of sphingolipid synthesis as a treatment strategy for Duchenne muscular dystrophy
- Tamoxifen in Duchenne muscular dystrophy (TAMDMD)
- DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD
- Facilitating diagnosis of critical illness myopathy using muscle excitability testing
- Rapid Exploratory Imaging for High-resolution and Whole Extremity Coverage in MR Neurography
- Deciphering novel mechanisms and effectors contributing to muscle dysfunction in Myotonic Dystrophy Type I
- Can HDAC/DNA methyltransferase inhibitors improve muscle function in a congenital myopathy caused by recessive RYR1 mutations?
- Identification of the critical regulators of protein synthesis and degradation in human muscle atrophy
- Exploring peripheral B-cell-helper T cell phenotypes in the blood of patients with Myasthenia gravis using mass cytometry (CyTOF)
- Molecular signature, metabolic profile and therapeutic potential of human myogenic reserve cells
- A multicenter cross-sectional and longitudinal study of the Swiss cohort of Merosin-negative congenital muscular dystrophy
- Targeting NADPH oxidase 4 in models of Duchenne muscular dystrophy
- Characterizing the role of ER stress in C9orf72-linked ALS pathology
- Inducing mitophagy with Urolithin A to restore mitochondrial and muscle function in muscular dystrophy
- Motor unit action potentials analysis in patients with myopathies with a new wireless portable and multichannel Surface EMG device (WPM-SEMG)
- Role and therapeutic potential of PLIN3 in neuromuscular diseases
- Changes in ventilation distribution in children with neuromuscular disease using the insufflator/exsufflator technique: An observational study
- Mechanism and function of genome organization in muscle development and integrity
- Role and therapeutic potential of NADPH oxidases in a mouse model of Duchenne Muscular Dystrophy
- Characterization of pathological pathways activated in muscles of patients with congenital myopathies with disturbed Ca2+ homeostasis
- Creation of a study team to conduct an SMA 1-clinical trial at the Centre for Neuromuscular Diseases of the University Children's Hospital Basel (UKBB)
- Novel treatment to stop progressive neuropathy and muscle weakness in multifocal motor neuropathy
- Understanding the pathomechanisms leading to muscle alterations in Myotonic Dystrophy type I
- Automated volumetry and quantitative MRI to diagnose peripheral nerve lesions – translational proposal for a new clinical diagnostic imaging tool
- Novel approaches against Spinal Muscular Atrophy by targeting splicing regulators
- Protective effects and mechanisms of action of tamoxifen in mice with severe muscular diseases
- Role of the receptor FgfrL1 in the development of slow muscle fibers
- Muscle velocity recovery cycles: A new tool for early diagnosis of critical illness myopathy
- Generation of uncommitted human IPSC derived muscle stem cells for therapeutic applications
- Transposable vectors for dystrophin-expression in a murine model for muscular dystrophy
- Cardiac involvement in patients with Duchenne/Becker Muscular Dystrophy; an observational study
- Deciphering the pathogenic mechanisms of C9ORF72 ALS
- Enhancing estrogenic signalling to fight muscular dystrophies: Mechanisms of action and repurposing clinically approved drugs
- Mechanisms and therapeutic potential of modulating PGC‐1α to alter neuromuscular junction morphology and function
- Triggering human myoblast differentiation: from EGFR to myogenic transcription factors
- Improving cellular therapies of muscle dystrophies by uncovering epigenetic and signaling pathways of muscle formation
- Protein engineering in an attempt to increase the mechanical, integrin dependent cytoskeleton-matrix linkage in muscle fibers
- Muscle velocity recovery cycles: a new tool for characterization of muscle disease in vivo
- Excessive neurotrypsin activation and agrin cleavage-a pathogenic condition leading to sarcopenia-like muscle atrophy?
- Evaluation of novel treatment strategies for dyspherlinopathies in mouse models
- Cell therapy of LGMD2D by donor HLA-characterized human mesoangioblasts (hMABs) produced in GMP conditions
- In search of small molecules targeting protein-RNA complex: a novel approach against Spinal Muscular Atrophy
- Restoration of autophagy as a new strategy for the treatment of congenital muscular dystrophies
- Development of magnetic resonance methods for functional imaging of the skeletal muscle
- Targeting ER stress response: a potential mechanism for neuroprotection in Amyotrophic Lateral Sclerosis
- Generation of uncommitted human IPSC derived muscle stem cells for therapeutic applications
- Projektbroschüre
- SEAL Therapeutics AG
- Meetings und Seminare
- Teilnahme an Dachverbände
- Patientenregister
- Netzwerk Myosuisse
FSRMM
- Chemin des Saules 4B
2013 Colombier - +41 78 629 63 92
- philippe.rognon@fsrmm.ch