Inducing mitophagy with Urolithin A to restore mitochondrial and muscle function in muscular dystrophy
Prof. Johan Auwerx, EPFL Lausanne
Abstract (Lay summary see below)
Duchenne’s muscular dystrophy (DMD) is an X-linked disease that affects 1 in 3500 males and is caused by mutations in the dystrophin gene, leading to progressive skeletal muscle degeneration and ultimately resulting in heart or respiratory failure. Increasing evidence indicates that DMD and aging share commonalities, such as a decreased mitochondrial function and autophagic capacity in both muscle cells and in muscle stem cells (MuSC), which leads to premature MuSC senescence and impaired muscle regenerative capacity.
During the last decade, it was demonstrated that dysfunctional mitochondria can be specifically targeted for elimination by autophagy, a process that has been termed mitophagy. In the frame of a research collaboration with the biotech company Amazentis, we have identified the first ingredient that is able to stimulate mitophagy, namely Urolithin A (UA), one of the gut metabolites produced upon consumption of ellagitannin and ellagic acid rich foods such as pomegranate, nuts and certain berries. UA improves strength, running and endurance in pre-clinical models of age-related muscle decline, and has a remarkably safe profile based on preclinical and clinical data.
Given the parallel between the mitochondrial dysfunction observed in DMD models and aging, we formulated the hypothesis that the induction of mitophagy upon UA treatment will lead to improved muscle function in DMD models. We propose here to test our hypothesis by using a strategy that relies on a broad spectrum of state-of-theart technologies that span the fields of biochemistry, molecular and cellular biology and muscle/exercise physiology. We plan to evaluate the impact of UA on (1) muscle function, (2) muscle regeneration and muscle stem cells (MuSC) function in Mdx and Dko mouse models of DMD. Positive data from these studies will foster the further development of UA as a clinical nutrition supplement to complement the diets of muscular dystrophy patients.
Lay summary
Urolithin A-induzierte Mitophagie zur Wiederherstellung der Mitochondrien- und Muskelfunktion bei Muskeldystrophie
Bei der Duchenne-Muskeldystrophie (DMD) handelt es sich um eine X-chromosomale Erkrankung, die bei 1 von 3500 Männern auftritt. Die Ursache liegt in einer Mutation des Dystrophin-Gens, die zu einer fortschreitenden Skelettmuskeldegeneration und schließlich zu Herz- oder Atemversagen führt. Zunehmende Beweise deuten auf Gemeinsamkeiten zwischen DMD und dem Alterungsprozess hin. In beiden Fällen weisen Muskelzellen, sowie auch Muskelstammzellen (MuSC) eine verminderte Mitochondrienfunktion und eine verminderte autophagische Kapazität auf, was zu vorzeitiger MuSCSeneszenz und beeinträchtigter Muskelregenerationsfähigkeit führt.
Während des letzten Jahrzehnts konnte gezeigt werden, dass dysfunktionale Mitochondrien spezifisch durch Autophagie eliminiert werden. Dieser Prozess wird als Mitophagie bezeichnet. Im Rahmen einer Forschungskooperation mit dem Biotech-Unternehmen Amazentis konnten wir die erste Substanz identifizieren, die Mitophagie stimulieren kann: Urolithin A (UA). Bei UA handelt es sich um einen Darmmetaboliten, der bei dem Verzehr von ellagitannin- und ellagsäurereichen Lebensmitteln wie Granatäpfeln, Nüssen und bestimmten Beeren entsteht. In vorklinischen Modellen des altersbedingten Muskelschwundes konnte durch UA eine Verbesserung der Muskelkraft, des Laufs, sowie der Ausdauer beobachtet werden. Des Weiteren weist UA ein bemerkenswert sicheres Profil basierend auf präklinischen und klinischen
Daten auf. Angesichts der Parallele zwischen der bei DMD-Modellen beobachteten mitochondrialen Dysfunktion und dem Altern stellten wir die Hypothese auf, dass die Induktion von Mitophagie durch UABehandlung zu einer verbesserten Muskelfunktion in DMD-Modellen führt. Die Strategie, die wir verfolgen, um die Hypothese zu testen, basiert auf einem breiten Spektrum modernster Technologien, das die Bereiche Biochemie, Molekular- und Zellbiologie sowie Muskel- / Bewegungsphysiologie umfasst. Anhand von DMD Mausmodellen werden wir den Einfluss von UA auf (1) die Muskelfunktion sowie (2) die Muskelregeneration und die Muskelstammzellfunktion untersuchen. Positive Daten aus diesen Studien werden die weitere Entwicklung von UA als klinisches Nahrungsergänzungsmittel für die Ernährung von Muskeldystrophiepatienten fördern.
Induction de la mitophagie avec l’urolithine A pour restaurer les fonctions mitochondriales et musculaires dans la dystrophie musculaire
La dystrophie musculaire de Duchenne (DMD) est une maladie à transmission récessive liée à l’X qui touche 1 homme sur 3500, qui est causée par des mutations dans le gène de la dystrophine et qui se caractérise par une dégénération musculaire progressive menant jusqu’à l’insuffisance cardiaque et respiratoire. Des études récentes montrent que le vieillissement et la DMD ont des points communs, comme la diminution de la fonction mitochondriale et de la capacité autophagique dans les cellules musculaires et les cellules souches du muscle (cellules satellites musculaires, CSM), ce qui provoque la senescence prématurée des CSM et donc une baisse de la capacité régénérative du muscle.
Durant la dernière décennie, il a été démontré que les mitochondries dysfonctionnelles peuvent être spécifiquement éliminées et recyclées par autophagie, un processus également connu sous le nom de mitophagie. Dans le cadre d’une collaboration de recherche avec la compagnie de biotechnologie Amazentis, nous avons identifié le premier ingrédient capable d’induire la mitophagie, à savoir l’urolithine A (UA). L’UA est l’un des métabolites produit dans l’intestin suite à la consommation d’ingrédients riches en tannins ellagiques et en acide ellagique, tels que la grenade, les noix et certaines baies rouges. L’UA améliore la force musculaire et l’endurance de course dans des modèles précliniques de diminution de fonction musculaire liée à l’âge, et a un profil de sécurité remarquablement sûr d’après les études précliniques et cliniques.
Etant donné le parallèle entre la dysfonction mitochondriale observée dans la DMD et le vieillissement, nous avons émis l’hypothèse que l’induction de la mitophagie suite au traitement avec l’UA entrainera une amélioration de la fonction musculaire dans les modèles de DMD. Nous proposons ici de tester notre hypothèse en utilisant un large spectre de techniques de pointe dans les domaines de la biochimie, de la biologie cellulaire et moléculaire et de la physiologie du muscle et de l’exercice. Nous prévoyons d’évaluer l’impact de l’UA sur (1) la fonction musculaire et (2) la régénération musculaire et la fonction des cellules satellites musculaires dans les modèles murins de DMD (Mdx et Dko). En cas de résultats positifs, ce projet permettra la promotion du développement de l’UA en tant qu’additif de nutrition clinique pour complémentaire l’alimentation des patients atteints de dystrophie musculaire.
Projets
- Nouveaux projets de recherche dès 2024
- L'importance de la recherche
- Projets financés
- Unstructured proteins as therapeutic targets for neuromuscular diseases
- Open and reproducible pipeline for the acquisition and analysis of muscle MRI data in Facioscapulohumeral Muscular Dystrophy
- Dissecting lysosomal signals to fight Pompe disease
- Functional properties and epigenetic signature of quiescent and early activated human muscle reserve cells
- Activation of human skeletal muscle stem cells:role of Orai3 ans its partner AHNAK2 in physiological condition and in Duchenne Muscular Dystrophy
- Understanding the clinical spectrum associated with VMA21 deficiency
- ANTXR2 as a key player in Collagen VI signaling in muscle stem cells: new therapeutic perspectives for COL6-related myopathies.
- Molecular mechanisms of complement activation and neuromuscular disruption by combinations of autoantibodies from patients with Myasthenia Gravis
- From the investigation of the role of SRSF1 in ALS/FTD to its targeting as a therapeutic strategy
- Molecular crosstalk between muscles and motor neurons and its role in neuromuscular circuit formation
- Molecular Diagnosis and Coping Mechanisms in Mitochondrial Myopathies
- IPRIMYO: Immune-privileged, immortal, myogenic stem cells for gene therapy of Muscular Dystrophy
- Effect of RYR1 mutations on muscle spindle function and their impact on the musculoskeletal system
- Therapeutic potential of human myogenic reserve cells in Duchenne Muscular Dystrophy
- Glutamine metabolism as a potential target for Duchenne Muscular Dystrophy
- Targeting protein s-acylation during Tubular Aggregate Myopathy
- Aggravating the phenotype of dystrophic mice for improving preclinical research and clinical translation for Duchenne muscular dystrophy
- Characterization of autoreactive T cells in Guillain-Barré syndrome
- A vascularized human muscle-on-a-chip to elucidate the contribution of endothelial-mesenchymal transition on the progression of muscular dystrophies
- Characterization of a novel form of ALS associated with changes in the sphingolipid metabolism
- Pre-clinical treatment of mouse models carrying recessive Ryr1 mutations with HDAC/DNA methyltransferase inhibitors.
- New aspects of TGFβ signaling in muscle homeostasis and regeneration
- Inhibition of sphingolipid synthesis as a treatment strategy for Duchenne muscular dystrophy
- Tamoxifen in Duchenne muscular dystrophy (TAMDMD)
- DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD
- Facilitating diagnosis of critical illness myopathy using muscle excitability testing
- Rapid Exploratory Imaging for High-resolution and Whole Extremity Coverage in MR Neurography
- Deciphering novel mechanisms and effectors contributing to muscle dysfunction in Myotonic Dystrophy Type I
- Can HDAC/DNA methyltransferase inhibitors improve muscle function in a congenital myopathy caused by recessive RYR1 mutations?
- Identification of the critical regulators of protein synthesis and degradation in human muscle atrophy
- Exploring peripheral B-cell-helper T cell phenotypes in the blood of patients with Myasthenia gravis using mass cytometry (CyTOF)
- Molecular signature, metabolic profile and therapeutic potential of human myogenic reserve cells
- A multicenter cross-sectional and longitudinal study of the Swiss cohort of Merosin-negative congenital muscular dystrophy
- Targeting NADPH oxidase 4 in models of Duchenne muscular dystrophy
- Characterizing the role of ER stress in C9orf72-linked ALS pathology
- Inducing mitophagy with Urolithin A to restore mitochondrial and muscle function in muscular dystrophy
- Motor unit action potentials analysis in patients with myopathies with a new wireless portable and multichannel Surface EMG device (WPM-SEMG)
- Role and therapeutic potential of PLIN3 in neuromuscular diseases
- Changes in ventilation distribution in children with neuromuscular disease using the insufflator/exsufflator technique: An observational study
- Mechanism and function of genome organization in muscle development and integrity
- Role and therapeutic potential of NADPH oxidases in a mouse model of Duchenne Muscular Dystrophy
- Characterization of pathological pathways activated in muscles of patients with congenital myopathies with disturbed Ca2+ homeostasis
- Creation of a study team to conduct an SMA 1-clinical trial at the Centre for Neuromuscular Diseases of the University Children's Hospital Basel (UKBB)
- Novel treatment to stop progressive neuropathy and muscle weakness in multifocal motor neuropathy
- Understanding the pathomechanisms leading to muscle alterations in Myotonic Dystrophy type I
- Automated volumetry and quantitative MRI to diagnose peripheral nerve lesions – translational proposal for a new clinical diagnostic imaging tool
- Novel approaches against Spinal Muscular Atrophy by targeting splicing regulators
- Protective effects and mechanisms of action of tamoxifen in mice with severe muscular diseases
- Role of the receptor FgfrL1 in the development of slow muscle fibers
- Muscle velocity recovery cycles: A new tool for early diagnosis of critical illness myopathy
- Generation of uncommitted human IPSC derived muscle stem cells for therapeutic applications
- Transposable vectors for dystrophin-expression in a murine model for muscular dystrophy
- Cardiac involvement in patients with Duchenne/Becker Muscular Dystrophy; an observational study
- Deciphering the pathogenic mechanisms of C9ORF72 ALS
- Enhancing estrogenic signalling to fight muscular dystrophies: Mechanisms of action and repurposing clinically approved drugs
- Mechanisms and therapeutic potential of modulating PGC‐1α to alter neuromuscular junction morphology and function
- Triggering human myoblast differentiation: from EGFR to myogenic transcription factors
- Improving cellular therapies of muscle dystrophies by uncovering epigenetic and signaling pathways of muscle formation
- Protein engineering in an attempt to increase the mechanical, integrin dependent cytoskeleton-matrix linkage in muscle fibers
- Muscle velocity recovery cycles: a new tool for characterization of muscle disease in vivo
- Excessive neurotrypsin activation and agrin cleavage-a pathogenic condition leading to sarcopenia-like muscle atrophy?
- Evaluation of novel treatment strategies for dyspherlinopathies in mouse models
- Cell therapy of LGMD2D by donor HLA-characterized human mesoangioblasts (hMABs) produced in GMP conditions
- In search of small molecules targeting protein-RNA complex: a novel approach against Spinal Muscular Atrophy
- Restoration of autophagy as a new strategy for the treatment of congenital muscular dystrophies
- Development of magnetic resonance methods for functional imaging of the skeletal muscle
- Targeting ER stress response: a potential mechanism for neuroprotection in Amyotrophic Lateral Sclerosis
- Generation of uncommitted human IPSC derived muscle stem cells for therapeutic applications
- Brochure décrivant les projets
- SEAL Therapeutics AG
- Rencontres et séminaires
- Participation à des associations faîtières
- Les registres de patients
- Le réseau Myosuisse
FSRMM
- Chemin des Saules 4B
2013 Colombier - +41 78 629 63 92
- philippe.rognon@fsrmm.ch